Frontiers of Imaging

Innovations in scientific imaging technologies such as ultrasound, MRI, photoacoustic, optical, X-ray, and quantum imaging could be transformative for biomedical applications and for understanding life at the cellular level. So, too, could advancing technology in visual proteomics that allows researchers to obtain near-atomic resolution readouts inside cells. The Frontiers of Imaging effort supports technology development to allow researchers to peer deep into tissues in order to better understand and cure disease. Read more.

Filter by:

Award

Showing 27 results

A Pulsed Laser Phase Plate for High-Resolution Cryo-electron Tomography
Award Visual Proteomics Imaging

This project will develop a pulsed ponderomotive phase plate that allows in-focus phase contrast of cryo-EM specimens, resulting in a highly tunable contrast transfer function intent on revolutionizing our understanding of biology.

Anatomical to Cellular Synchrotron Imaging of the Whole Human Body
Award Deep Tissue Imaging

This project will achieve transformations in X-ray tomography technology by enabling cellular-level imaging anywhere in whole organisms, including human bodies, providing insight at multiple anatomical levels.

Biomolecular Ultrasound for Deep Tissue Imaging of Cellular Functions
Award Deep Tissue Imaging

This project will develop genetically encodable biomolecular tools that will enable ultrasound to image specific cellular functions deep inside the body.

Chemically Triggered Probes for High-Resolution, Multiplexed Imaging
Award Visual Proteomics Imaging

This team will develop a general strategy for high-resolution, multiplexed imaging of dynamic protein interactions in live cells, using biocompatible (bioorthogonal) probes.

Clonable In-situ Label for High-resolution Cellular Imaging
Award Visual Proteomics Imaging

This project will develop a widely-adaptable, cloneable label to enable visualization of macromolecular complexes inside cells at near-atomic resolution.

Combining Light and Sound for Deep Fluorescence Microscopy
Award Deep Tissue Imaging

This project will use a novel, multidisciplinary approach aimed at overcoming the current limitations of wavefront shaping microscopy to enable truly deep biological imaging.

Computational Microscopy with Multiple-Scattering Samples
Award Deep Tissue Imaging

This team will apply new computational microscopy techniques to reconstruct a sample’s 3D light scattering potential and digitally correct scattering effects.

Correlative Cryo-electron Tomography Pipeline of Plasma Membrane Complexes
Award Visual Proteomics Imaging

This team will develop protocols and software to build a universal pipeline for solving protein and organelle structures.

Creating a Pipeline for Expanded Access to Volumetric Visual Proteomics
Award Visual Proteomics Imaging

This team will build a cost-effective pipeline for visual proteomics to increase access to advanced imaging technologies.

CryoMinflux-guided In-situ Visual Proteomics and Structure Determination
Award Visual Proteomics Imaging

This team will develop a novel cryo-superresolution microscope to improve the accuracy of contextualized protein locations with an emphasis on developing open-source tools to guide structure determination.

Deep Tissue Short-Wave Infrared Multiphoton Microscopy
Award Deep Tissue Imaging

This project will pioneer short-wave infrared multiphoton microscopy, transforming intravital microscopy into a non-invasive technology.

Development of Stroboscopic Cryo-electron Tomography
Award Visual Proteomics Imaging

This project will explore the feasibility of delivering electron dose in short bursts as a proof-of-concept for rapid high-resolution 3D imaging of frozen-hydrated cells.

Enabling a New Type of Microscopy for Ultradeep Imaging
Award Deep Tissue Imaging

This project will revolutionize the imaging depth with light at optical wavelength resolution by developing a new type of microscopy that uses nonlinear holography for ultradeep tissue imaging.

Establishing Experimental Model Systems for Visual Proteomics
Award Visual Proteomics Imaging

This team will develop three experimental model systems for visual proteomics with a focus on high statistical confidence to disseminate high-quality proteomic and image data.

Hybrid Technologies for Structural Cell Biology at Near-Atomic Resolution
Award Visual Proteomics Imaging

This team will develop technology to advance in-cell structural biology with machine learning and super-resolution light microscopy.

Improved Direct Electron Detection Camera
Award Visual Proteomics Imaging

This team will develop the roadmap to engineer a high-resolution, high-throughput cryo-electron tomography camera that will improve sensitivity, speed, and detector size.

Laser Phase Contrast in cryo-EM for Visual Proteomics at Atomic Resolution
Award Visual Proteomics Imaging

This project will integrate laser phase plates into the most modern Krios electron microscope to enable the ultimate phase contrast microscope in cryo-tomography.

Locating Label-free Molecules in Cells with High Precision and Sensitivity
Award Visual Proteomics Imaging

This team will develop computational methods and data collection protocols to achieve target detection with the best possible precision and sensitivity, enabling the creation of pseudo-atomic maps of localized targets within cells.

Megapixel Ultrasound Scanners for Deep Tissue Cellular Imaging
Award Deep Tissue Imaging

This project will use high-speed camera and laser technology to create contactless ultrasound arrays, able to image centimeters into tissue and at cellular resolution.

Multi-Task Learning to Map Proteins Inside Cells at Near-Atomic Resolution
Award Visual Proteomics Imaging

This project will design computational tools to accurately detect molecules in cellular tomograms and determine their high-resolution structures.

Nonlinear and Multimolecular Deep Tissue Ultrasound Imaging
Award Deep Tissue Imaging

This project will develop new ultrasound techniques for deep tissue imaging of cell types, cellular interactions, and cancers.

Obtaining Deep Tissue Data Using MRI Microcytometry
Award Deep Tissue Imaging

This team will develop magnetic resonance microscopy that combines novel data acquisition approaches, image reconstructions, gradient and cryogenic radiofrequency coil technologies, and ultra-high field strength to obtain unique cellular information in disease models.

Pushing the Limit of Photoacoustic Imaging
Award Deep Tissue Imaging

This project will develop a comprehensive toolbox of genetic near-infrared photochromic photoacoustic probes, acoustic-tunnel enhanced light delivery, and stochastic localization of photoacoustic probes in order to push the resolution limit of photoacoustic imaging.

Quantum Multi-Photon Excitation Microscopy for Deep Tissue Imaging
Award Deep Tissue Imaging

This project will develop quantum multi-photon excitation microscopy for centimeter-scale deep tissue imaging in complex organisms.

Resolving Biostructures In-situ via Cryogenic Light and Electron Microscopy
Award Visual Proteomics Imaging

This team will incorporate an advanced fluorescent microscope within a commercial Cryo-FIB to improve localization and identification accuracy of subcellular features.

Short Wavelength Infrared 2-Photon Microscopy for Deep Tissue Imaging
Award Deep Tissue Imaging

This project will develop new near-infrared emitters and dual infrared 2-photon imaging technologies for deep tissue subcellular-scale imaging in brain and plant tissues.

Single-Cell Photoacoustic Molecular Imaging at Centimeter Depth
Award Deep Tissue Imaging

This project will develop and validate a super-resolution photoacoustic imaging technology using a revolutionary ultrasensitive nanophotonic sensor that enables single-cell resolution molecular imaging at centimeter depth in vivo.

Sorry, there are currently no results that match those criteria. Please try selecting fewer filters or clearing all search terms.